Crystal Structure Prediction for Low-Cost Battery Materials

Angela F Harper November 7, 2018

ESDG Presentation

- 1. Na-ion batteries
- 2. Crystal structure prediction
- 3. Iron phosphide anodes
- 4. Future work

Na-ion batteries

Li-ion battery

SoutheastCon 2016, pp. 1-6 (2016)

The cost of Li-ion

The Cu current collector and rare earth metal cathode contribute most to the overall battery cost

J. Electrochem. Soc. , 162, 14 (2015)

- \cdot Na⁺ does not intercalate into graphite
- \cdot Large Na^+ ions decrease cycling capability
- Na-ion batteries have lower energy densities than Li-ion

Anode options

6

High capacity anodes

- + Li-ion batteries show conversion reactions between FeP + Li and FeP $_{\rm 2}$ + Li
- The conversion mechanism for FeP₄ is not yet known for Li or Na-ion batteries
- FeP₄ shows good reactivity vs. Li with a capacity of 1137 mAh/g

What are the steps of sodiation from iron phosphide, specifically FeP₄, to Na? Are there any other high capacity anodes in this system?

Crystal structure prediction

Binary phase diagram

Ternary phase diagram

2D ternary phase diagram

3D ternary phase diagram

The electrical energy upon charging from $Na_{x_1}AB$ to $Na_{x_2}AB$:

$$E = -\int_{x_1}^{x_2} [\mu_{Na}(x) - \mu_{Na}^0] dx_{Na}$$

= -[G_{Na_{x2}AB} - G_{Na_{x1}AB} - (x₂ - x₁)G_{Na}]
= -\Delta G_{rxn} (1)

So the voltage drop between these two compounds is:

$$V = \frac{-\Delta G_{\rm rxn}}{(x_2 - x_1)F} \tag{2}$$

Phys. Rev. B, 56, 3, 1354 (1997)

Ternary voltage profile

Nature Communications, 7,13779 (2016)

Iron phosphide anodes

Na+Fe+P ternary phase diagram

Phase diagram for 3,000 AIRSS-identified structures, including those found in the ICSD, OQMD, and Materials Project

FeP₄ comparison to experimental voltage profile

The green curve, FeP4 shows good comparison with experiment, especially

for the 1st cycle of the Na-ion battery

$FeP_4 + 10Na \rightarrow Na_3P + NaFeP$		
Gravimetric	Voltage	Reaction
Capacity	(∨)	
(mAh/g)		
128	0.76	$FeP_4 + xNa \rightarrow Na_3P_7 + FeP_2$
298	0.54	$FeP_2 + Na_3P_7 + xNa \rightarrow NaP + FeP_2$
373	0.34	$FeP_2 + NaP + xNa \rightarrow Na_5P_4 + FeP_2$
559	0.33	$FeP_2 + Na_5P_4 + xNa \rightarrow Na_5P_4 + FeP$
1342	0.28	$FeP + Na_5P_4 + xNa \rightarrow FeP + Na_3P$
1491	0.23	$FeP + Na_3P + xNa \rightarrow Na_3P + NaFeP$

Layered FeP structures

Upon sodiation it is possible a layered structure is formed suggesting an insertion mechanism for FeP₄

Future work

- Fully characterise the ternary system and complete AIRSS searches
- Understand the different ground state magnetic orderings
- Compare with more experimental data, and potentially translate to Li-ion batteries
- Make a temperature dependent voltage profile, or one that considers phases not on the convex hull